久久9999国产精品免费-久久999精品-久久99爱视频-久久99操-国产成人综合高清在线观看-国产成人综合精品

咨詢電話:13699145010
article技術文章
首頁 > 技術文章 > 材料高壓直流擊穿強度測試和體電阻率實驗的研究

材料高壓直流擊穿強度測試和體電阻率實驗的研究

更新時間:2023-01-04      點擊次數:1898

高壓直流電纜聚丙烯材料擊穿強度和體積電阻率的研究進展

 

_MG_3657_副本.jpg

 

0 引言


    我國能源東西分布不均衡問題,制約著國民經濟的快速可持續發展。通過特高壓輸電網絡將電能 輸送至經濟密集區,助力新時期國家發展的需求日益凸顯。相比于交流輸電,高壓直流輸電起步較晚,但在大容量遠距離送電、電力能源互聯領域優勢顯。自 1954 年瑞典本土與哥特蘭島間建成首條高壓直流海底塑料電纜線路并投入商業化運行 以來,高壓直流輸電技術得到了快速發展。 

    相比于直流架空線路,直流電纜輸電方式在海 島送電、城市電網改造與升級、分布式能源并網送 電等方面優勢明顯。目前,高壓直流電纜按絕緣 種類不同可分為粘性浸漬紙式、充油式和擠壓型電3 。前兩者運行安全可靠的優點使其在早期的高壓直流電纜輸電工程中應用較廣,但也存在安 裝工藝復雜、線路長度及運行溫度受限的不足。擠 壓型電纜以聚合物材料為絕緣介質,因其具有良好的電氣、機械和熱性能而得到快速推廣,其中交聯聚乙烯(cross linked polyethyleneXLPE)高壓直流電 纜性能突出、應用尤為廣泛

      隨著高壓直流輸電工程的不斷建 設和投運,以 XLPE 為絕緣材料的高壓直流電纜在 生產和運行過程中所暴露出來的問題也越來越 。為實現電能的大規模和遠距離輸送需求,提 高電網自身的安全性、可靠性、靈活性和經濟性, 我國高壓大容量輸電規程草案要求直流電纜工作溫 度和電壓等級分別為 90 ℃和±500 kV±800 kV 等, 但目前 XLPE 電纜的最高工作溫度和電壓僅為 70 ℃和 500 kV。生產 XLPE 電纜時用到的交聯劑及 交聯過程產生的副產物等雜質可能會引入絕緣層內 部,使得直流電場下空間電荷積聚更加嚴重,從而 加速絕緣老化。另外,制造 XLPE 電纜時采用的交 聯工藝本身具有能耗大、效率低的不足。而且 XLPE 電纜在達到使用壽命后,絕緣廢料的回收再利用難 度很大,焚燒處理不僅污染環境,還浪費資源。

     國內外研究人員對大容量環保型直流電纜絕 緣材料的研究主要集中在聚乙烯(polyethylene,PE) 和聚丙烯(polypropylene,PP) 基材料上。相對于 PEPP 熔點較高,可以滿足電纜在較高溫度下運 行的需求,有較高的擊穿強度和體積電阻率,對提高電纜運行電壓等級和線路載流量意義重大。但是 聚丙烯材料具有很強的脆性和剛性,耐低溫沖擊能較差,導熱能力低。高壓直流電纜運行工況復雜, 絕緣介質受極性不變的強電場、導體發熱產生的溫度場、介質外部或內部產生的機械應力的共同影響, 因此對聚丙烯基環保型絕緣材料的研究需滿足電性能、熱性能和機械性能的要求。

     近年來研究發現納米粒子因具有量子尺寸效應、比表面積大等特點而在改善聚合物材料性能方 面表現優異[8]。自 1994 T. J. Lewis 提出納米電介質概念以來,各國學者對添加納米粒子后聚合物 絕緣材料性能的提升及其改善機理進行了廣泛研 究。由于納米粒子的粒徑、形狀、摻雜量不同,構 成納米復合電介質的聚合物基體不同,其在抑制空 間電荷、耐電樹枝、提高擊穿強度等介電性能,提 高導熱率、耐熱性等熱性能,以及提升拉伸強度、 斷裂伸長率等力學性能方面,所表現出的效果也不盡相同。多數學者認為,聚合物與納米填充物之間 的納米級過渡區域,即界面,是影響納米復合材料性能的關鍵因素。聚合物基體的特性與納米填料的特性共同決定了復合材料的界面結構和性質, 盡管許多學者對此提出了不同的模型進行解釋,但仍沒有定論。 

    雖然,國內外學者已經開展了將聚丙烯及其納 米材料應用于高壓直流電纜主絕緣的研究工作,但仍處于起始階段。聚丙烯納米復合材料的粒子選型、 *佳摻量以及偶聯劑類型及其含量對納米復合材料 介電性能的影響等問題,仍需深入研究。因此,對目前的研究現狀及取得的成果給予必要的歸納和總結,是對聚丙烯基高壓直流電纜絕緣材料的研發具有重要參考意義的。本文綜合國內外研究成果,介紹了聚丙烯及其應用于高壓直流電纜的可行性,論述了納米填料改善聚丙烯單體及多元共混物電氣性能、導熱性能、機械性能的作用及機理,探討了老化條件對聚丙烯納米復合材料性能的影響,并對高壓直流電纜用聚丙烯基納米復合材料的研究作了總 結和展望。

 

_MG_3257_副本.jpg

 

1 聚丙烯及其用于高壓直流電纜絕緣材料 的可行性研究 

1.1 聚丙烯材料理化性能

     聚丙烯是以丙烯為單體經聚合得到的一種熱塑性樹脂,結構規整,結晶度高,耐腐蝕性好,耐熱性優良[16]。聚丙烯按其甲基排列位置不同可分為:等規聚丙烯(isotactic polypropylene,iPP)、間規聚丙烯(syndiotactic polypropylene,sPP)和無規聚丙烯(atactic polypropylene,aPP)。3 種聚丙烯的 分子結構示意圖見圖 1。  

     聚丙烯的熔點可達 150 ℃以上(不同牌號熔點 不同),比聚乙烯高 40%~50%左右,長期工作溫度 可達 90 ℃,良好的耐熱性能對于提高電纜工作溫度和工作電壓具有重要意義。聚丙烯屬于非極性材料, 具有較高的擊穿強度(大多在 300 kV/mm 左右), 體電阻率較大(大多在 1016 ?·m 左右)且隨溫度變化不明顯,可在相同絕緣層厚度的情況下提高電纜 運行電壓、提高線路輸送容量、降低輸送損耗。聚丙烯空間電荷積聚較少,電荷注入的閾值電場較高。 聚丙烯幾乎不吸水,故其絕緣性能受環境濕度影響較小。李喆等研究發現等規聚丙烯可以達到直流電纜對絕緣材料耐壓強度和電導特性的要求。

image.png

    另外,聚丙烯材料不需交聯處理即可有較高的 機械強度,而且是典型的熱塑性材料,可以回收利 用,符合環境友好型電纜絕緣的發展需求[7]。但聚 丙烯材料本身也有一些缺點,如低溫脆性大、耐老 化性能差、導熱率低等,對其應用于直流電纜絕緣 有一定的限制。


1.2 聚丙烯應用于高壓直流電纜絕緣材料的可行性

     聚丙烯具有優異的介電和耐熱性能,早在 2002 年,就有學者對其應用于電力電纜主絕緣材料的可 行性進行了研究。其中,日本學者 K. Kurahashi 等 在上次以 sPP 為主絕緣、添加 PE 和抗氧化 劑共混制成 0.6 kV 和 22 kV 電纜,研究發現不同溫 度下該電纜線路的交流擊穿強度和介質損耗可滿足 實際應用的要求。K. Yoshino 等研究發現 sPP 的 電性能、熱性能和機械性能比 iPP、aPP 和 PE 更加 優異,作者以 sPP 和彈性體共混物制備的 22 kV 電 纜具有電氣性能優異、可回收的特點[。I. L. Hosier 等人及 C. D. Green 等人[21]同樣研究發現將 iPP 與乙烯–丙烯共聚物共混得到的絕緣材料,表現出良 好的機械韌性和電氣性能。 

      目前,聚丙烯基材料作為高壓直流電纜主絕緣 材料的商業化應用還處于研發階段。意大利 Prysmian 公司的 S. Belli 等在 2010 年公開了基于聚丙烯材料開發的高性能熱塑性彈性體絕緣材料(high  performance thermoplastic elastomer, HPTE),研 究發現基于 HPTE 材料研制的 P-Laser 電纜比傳統 XLPE 電纜有更好的電性能,比聚丙烯有更好的機械性能。該公司分別于 2015 年公布了最新研制的全尺寸 P-Laser 320 kV 高壓直流電纜的原型樣品。 

     聚丙烯材料綜合性能優異,在高壓直流電纜主絕緣領域的研究也表現出巨大的潛力,但離實際應用仍有一定的距離。聚丙烯材料在室溫下柔性不足、 低溫韌性差,不能直接用于電纜主絕緣。而且研究人員大多關注聚丙烯機械性能的改善,對聚丙烯絕 基材料介電性能的研究還不夠全面,沒有考慮空間電荷、電樹枝等問題。 

     高壓直流電纜運行中存在空間電荷積聚及內部電場畸變帶來的電樹枝老化、擊穿故障等問題受絕緣層散熱和溫度梯度影響可能帶來的電場反轉、電氣性能及使用壽命下降等問題;以及由機械應力等作用造成的絕緣內部缺陷等問題聚丙烯若用作高壓直流電纜絕緣材料,必須改性處理,才能改善以上介電、導熱及機械性能方面存在的不足。納米粒子填充改性可顯著提高固體電介質的電學、熱學和力學等性能,許多學者對聚丙烯基納米復合材料的性能表現進行了有益探索。

 

2 納米摻雜改性高壓直流聚丙烯基復合絕 緣材料研究現狀 

2.1 聚丙烯納米復合材料介電性能研究 

2.1.1 空間電荷

       空間電荷效應是高性能直流絕緣材料研發的關鍵問題。高壓直流電纜正常運行時,極性不變、強度較高的電場長時間作用于絕緣介質,造成絕緣層空間電荷的積聚、內部電場的畸變。畸變的電場嚴重時可引發介質內局部放電、加速聚合物材 料老化及電樹枝生長,最終導致絕緣擊穿故障,嚴重影響電纜性能和使用壽命。自 20 世紀 90 年代中 期,便有學者 Y. Suzuoki 等研究發現預施電壓下聚丙烯內空間電荷的積聚造成內部電場的畸變,降低了其絕緣擊穿強度。因此,如何改善聚丙烯絕緣材料的空間電荷特性,是開發高壓直流電纜用聚丙烯基絕緣材料的重要課題。 

    多數學者認為納米復合材料中聚合物基體與納米粒子間形成的界面區域引入了大量陷阱,改變了復合材料的陷阱能級,對其空間電荷的注入、遷移和消散行為產生了重要影響。但由于界面行為的復雜性(影響聚合物結晶、改變介質內部應力等),而且無法直接觀測界面區域的微觀結構及作用機理,雖然許多學者對此提出了不同的模型,如T. J. Lewis 等提出的納米電介質“介電雙層”結構(如圖 2 所示)、T. Tanaka 等提出的多核模型 (如圖 3 所示)、J. Kindersberger 等提出的相間體積 模型,都在一定程度上有助于推測和解釋納米復 合電介質材料所表現出來的優異性能,但仍未形成 定論。 

         G. C. Montanari 等研究了添加合成蒙脫土 Montmorillonite, MMT)納米顆粒的 iPP sPP 納米復合材料的電荷俘獲行為特性,與純PP 相比, 納米復合材料的電荷俘獲能力明顯增強,直流極化 電場下空間電荷積聚的減少說明納米復合材料的絕 緣性能得到整體提高。 

    由于納米顆粒具有較大的表面能,在制備納米復合材料過程中容易發生納米團聚現象,不僅使其分散性及與聚合物基體間的相互作用減弱,甚至會加重復合材料中空間電荷的積聚。N. Fuse 等研究發現,納米黏土顆粒在分散至聚丙烯基材料的過 程中引入的離子基團,加重了復合材料的空間電荷 積聚。因此,納米粒子的分散處理對絕緣性能影 響較大,應引起重視。 

     研究人員為解決納米團聚問題,做了大量研究工作并取得了一定成果。研究發現,通過調節制備 納米顆粒和聚合物基體共混的條件,如溫度,可提 高納米顆粒的分散效果。Z. Li 等在 6 種不同溫度下通過機械共混得到了不同納米摻雜量的 iPP/MgO 納米復合材料,研究發現 200 ℃溫度時納米顆粒分 散性較好,且 MgO 納米顆粒在復合材料中有成核 作用,同時抑制了空間電荷的積聚。 

      采用偶聯劑、表面活性劑、接枝、原位聚合等手段對納米顆粒進行表面處理,可減少納米團聚, 促進納米粒子在聚合物中的分散及其與基體間的相互作用M. Abou-Dakka 等填充經硅烷偶聯劑修飾后的合成納米云母顆粒及天然蒙脫土納米顆粒使聚丙烯基復合材料的陷阱帶向淺處移動且電荷消 散速度要比沒填充的快很多,單極下淺陷阱中的電荷在反極性時可得到有效抑制,深陷阱中的電荷也被明顯束縛Y. Zhou 等研究發現經表面修飾的 TiO2納米顆粒在聚丙烯復合材料中引入的大量淺陷阱取代了 PP 中原有的深陷阱,進而增強了載流子的遷移能力,改善了空間電荷的積聚

     研究人員對經表面處理和未經處理的 MgO 米顆粒對聚丙烯復合材料電氣性能的影響進行了對 比。操衛康等研究發現 MgO 納米顆粒可在 iPP 均勻分散且經表面處理后的納米粒子團聚更少,使 復合材料的結晶度有所提高;同時經表面處理的納 米復合材料對空間電荷的抑制作用更強,在 50  kV/mm 電場下質量分數為 0.5%的納米復合材料表 現出優的抑制效果。周垚等研究發現經表面處 理后的 MgO 納米顆粒可均勻分散在 iPP 中,在 MgO 納米顆粒的添加量為 3phr (1phr 即每 100 g iPP 分散 1 g MgO 納米顆粒)時,復合材料沒有明顯 的空間電荷積聚,且此時的直流擊穿強度最高,比 未添加納米顆粒的純試樣提高了 29.3%。 

     納米摻雜是改善聚合物空間電荷特性的重要 手段,經表面處理的納米顆粒可減少團聚、促進納 米粒子的分散及其與基體間的相互作用,但納米粒 子與聚合物基體間的界面效應還沒有定論,對納米 選型標準(如種類、粒徑等)、最佳摻量、復合物制 備工藝等進行系統分析和研究將有助于改善聚丙烯 納米復合材料空間電荷特性。

image.png

2.1.2 電樹枝老化 

     高電壓塑料型直流電纜在生產、運行過程中, 絕緣介質中可能產生雜質、空隙、分子鍵斷裂等缺。聚合物絕緣材料在長期置于高強度電場下 時,由缺陷等引起的電場集中、局部放電等更容易 在絕緣中形成樹枝狀局部損壞,樹枝狀微通道順著 電場方向生長形成電樹枝,嚴重時可貫穿整個絕緣, 引發擊穿事故。 

         B. X. DU 等研究發現,PP 在不同溫度下受幅值 12 kV、頻率 400 Hz 脈沖電壓作用時,均可長出樹 枝狀電樹枝;相對于 XLPE,聚丙烯內的電樹枝更 難產生且生長速度和尺寸更小,見圖 4,這對于 提高電纜運行的可靠性意義重大。J. Holto 等觀察到 sPP 擊穿前有單支和多支兩種電樹枝長出。因 此,研究適用于高壓直流電纜的絕緣材料,需要對 其電樹枝進行抑制。 

     納米復合材料中,當電樹枝生長至納米位置 時,一般很難穿過納米顆粒,樹枝通道會繞過納米 粒子或停止生長,尤其當納米粒子為片層狀結構時 對電樹枝生長的阻隔效果更為明顯。而且,添加 的納米顆粒具有很大的比表面積,顆粒周圍產生的 微小空洞使得電樹分支增多,消耗了電樹發展的能 量,使得叢林狀電樹結構出現的概率變大,延緩了 電樹枝的生長速度及擊穿時間。 

     遲曉紅等人用馬來酸酐接枝聚丙烯并填充經 有機化處理的納米 MMT 顆粒,采用熔融插層一步 法和二步法制備了 PP/MMT 納米復合材料。研究發 現采用二步法制備的 PP/MMT 納米復合材料的結 晶尺寸和結晶度均有所提高,且 MMT 可以較好地 分散在復合材料中。同時,MMT 具有片層狀結構 和異相成核作用,可以有效阻隔電樹枝的生長并減小電樹枝的尺寸。 

    目前關于聚丙烯納米復合絕緣材料電樹枝特 性的研究較少,此外,納米摻雜可以抑制空間電荷 的形成,而納米顆粒本身及其界面區域較強的耐放 電老化特性能阻礙電樹枝的進一步生長,結合納 米阻隔、界面效應研究分析聚丙烯納米復合材料的 電樹枝特性還需進一步深入。

2.1.3 擊穿強度 

    絕緣材料耐壓強度是評價電纜電氣性能優劣的重要指標,納米摻雜可提高聚合物的擊穿強度對聚丙烯基電纜料的研制具有重要意義。根據“介 電雙層”結構模型,填充一定量的納米粒子可以增加合物材料的陷阱能級和陷阱密度,使得同極性 電荷積聚在材料表面、載流子注入量減少,進而削弱了材料內空間電荷積聚引起的電場畸變,提高了復合材料達到擊穿所需的場強。同時,納米粒子可填充聚合物結晶時形成的球晶間隙,阻擋電荷的輸運和注入。 

    目前,不少文獻對聚丙烯納米復合材料的擊穿 特性進行了較多研究。M. Takala 等研究發現 POSS 納米粒子可以填充聚丙烯球晶間隙,阻擋電荷的輸運,使納米復合材料的擊穿強度大幅提高M.  Takala 等在研究中還發現,與純 PP 相比,PP/SiO2 納米復合材料的交流和直流擊穿場強均明顯提高, 其中直流擊穿強度提高了52.3%研究復合材料的擊穿性能時,微觀結構的分析 同樣值得關注。S. Virtanen 等研究發現不同摻雜量的納米CaCO3 顆粒在聚丙烯基體中分散水平基本相同,而納米團聚引起的微粒的密度隨納米摻雜濃 度的增大呈指數形式提高。復合材料的直流擊穿強在質量分數為 1.8%時最大,后隨納米濃度提高引 起的微粒密度變大而降低。馬超等通過熔融共混制備了PP/Al2O3納米復合材料,研究發現復合材料 直流擊穿場強、陷阱的能級、陷阱密度,均隨納Al2O3 摻雜量的增加呈先變大后變小的特征,質量分數為 0.5%時達到最大值,且此時摻雜納米的復合材料的直流擊穿場強比未摻雜的提高了27%改善聚丙烯擊穿強度多采用 SiO2Al2O3CaCO3POSS 等納米材料,使復合材料達到最佳擊穿特性時的摻量也有所不同,對采用納米表面處理改善團聚及其與基體的結合以提高復合材料的擊穿強度的研究可作進一步探討。

image.png

北京中航時代儀器設備有限公司
  • 聯系人:石磊
  • 地址:北京市房山區經濟技術開發區1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關注我們

歡迎您關注我們的微信公眾號了解更多信息

掃一掃
關注我們
版權所有 © 2025 北京中航時代儀器設備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術支持:化工儀器網    
涨乳催乳改造调教公主| 一本久久综合亚洲鲁鲁五月天| 女角色翻白眼流口水流眼泪图片| 国产成人午夜无码电影在线观看| 艳妇乳肉豪妇荡乳ⅩXX| 少妇爆乳无码专区网站| 久久久国产99久久国产久| 第一次爱的人视频播放完整版 | 狠狠色噜噜狠狠亚洲AV| JAPANESEHD熟女熟妇伦| 亚洲VA无码VA在线VA天堂| 人马畜禽CORPORATION| 极品YIN荡人妻合集H| 八戒八戒在线高清观看视频4| 亚洲精品无码AV片| 日韩AV无码社区一区二区三区| 精品一区二区三区影院在线午夜| 抽插丰满内射高潮视频| 一本色道久久综合一| 他趴在两腿中间舔我私密有事吗| 两女女百合互慰AV赤裸无遮挡 | 成熟丰满熟妇高潮XXXXX视频| 亚洲无线一二三四区手机| 少妇被躁爽到高潮无码人狍大战| 久久综合亚洲色HEZYO社区| 国产精品国产三级国产试看| 50岁熟妇的呻吟声对白| 亚洲AV永久无码精品漫画| 人人爽人人片人人片AV| 久久精品日日躁夜夜躁| 国产成人亚洲精品青草天美| 7777精品久久久大香线蕉| 亚洲AV永久无码精品放毛片一| 日本丰满人妻HD浓毛| 久久久久亚洲AV无码永不| 国产精品国三级国产AV| A级黑粗大硬长爽猛出猛进| 亚洲精品TV久久久久久久久久| 日韩精品视频三区| 国产高潮抽搐翻白眼在线播放 | 中文字幕无码无码专区| 亚洲AV色先锋资源电影网站| 日本又黄又爽GIF动态图| 久久精品夜色噜噜亚洲A∨| 国产丰满大屁股XXXX| JAPANESE日本熟妇伦| 亚洲欧美乱日韩乱国产| 天堂在\/线中文在线资源| 欧美多人片高潮野外做片黑人| 精品久久久99大香线蕉| 国产成人无码一区二区三区| WWW.好好日.COM| 一出一进一爽一粗一大小说| 小受叫床高潮娇喘嗯啊MP3| 日本久久久久亚洲中字幕| 泷泽萝拉AV种子| 狠狠噜天天噜日日噜AV| 国产9在线 | 欧洲| BGMBGMBGM欧美老妇| 亚洲伊人久久大香线蕉| 小雪你的奶好大把腿张开| 日产亚洲一区二区三区| 免费无遮挡禁18污污网站| 精品国产一区二区三区香蕉| 国产精品国产高清国产AV| 波多野结衣Av无码久久一区二区| 曰本女人牲交全视频播放毛片| 亚洲AV自慰白浆喷水网站少妇| 四季AV无码专区AV浪潮| 人妻精品久久一区二区av| 麻豆文化传媒精品| 精品无码AV人在线观看| 国产乱来乱子视频| 丰满少妇人妻HD高清果冻传媒 | 在公车上露出奶头自慰| 亚洲S色大片在线观看| 天天爽夜夜爽夜夜爽| 日本COSME大赏美白| 男人吵架后疯狂要你什么心理 | 亚洲日韩一区二区三区波多野结衣| 无码丰满少妇2在线观看| 日本无人区码一二三区别| 年轻老师的滋味5| 久久人人玩人妻潮喷内射人人| 黑人与亚洲美女ⅩXXX| 国产成人无码精品XXXX网站| 成年性生交大片免费看| CAOPORN免费公开视频| 中文成人久久久久影院免费观看| 亚洲日本中文字幕乱码在线电影| 亚洲 小说 欧美 激情 另类| 婷婷蜜桃国产精品一区| 日韩无码视频一区二区| 强壮公弄得我次次高潮| 女人和拘做受全过程免费| 老熟妇高潮一区二区高清视频| 精品亚洲卡一卡2卡三卡乱码| 国产在线无码一区二区三区| 国产福利日本一区二区三区| 丰满人妻熟妇乱又伦精品软件| 拔萝卜电视剧高清免费观看全集| 91精品人妻欧美一区二区三区| 玩丰满少妇XXXXXⅩ性麻| 色橹橹欧美在线观看视频高清| 热久久99这里有精品综合久久 | 免费热播女人毛片| 久久亚洲中文不卡AV一区二区| 精品人亚洲成A人片在线观看无码专区 | 欧美精品九九99久久在免费线| 麻豆传播媒体APP官网在线观看 | 久久久久久久久久久综合日本| 精品BBBBB性ⅩXXXX少妇| 国产一区二区精品久久岳| 国产品无码一区二区三区在线| 国产成人AV性色在线影院色戒| 粉嫩av.一区二区三区免费| 成 人 黄 色 网站 S色| 白嫩白嫩BBBBBBBBB-| 啊灬啊灬啊灬快灬高潮了电影片段| av在线一区二区三区| 99久久国产综合精品女| 69无人区卡一卡二卡| 7777精品伊久久久大香线蕉| 77777亚洲午夜久久多喷| 91人妻人人澡人爽人精品| 50岁熟妇的呻吟声对白| 999久久久免费精品播放| 99精产国品一二三产区区别网站 | 拍国产乱人伦偷精品视频| 欧美肉体裸交做爰XXXⅩ性玉蒲| 欧美FREESEX呦交| 欧美成人一区二区三区在线视频 | 欧美成人一区二区三区不卡| 欧美内射AAAAAAXXXXX| 欧美午夜理伦三级在线观看| 强开小娟嫩苞又嫩又紧| 人人做人人爱在碰免费| 日本一本2017国产| 色欲色欲天天天WWW亚洲伊| 少妇太爽了在线观看免费视频| 四虎亚洲精品成人A在线观看| 体验区试看120秒啪啪免费| 玩弄粉嫩少妇高潮出白浆AⅤ| 无码熟熟妇丰满人妻PORN| 性色做爰片在线观看WW| 亚洲JIZZJIZZ少妇| 亚洲精品国产AV成拍色拍婷婷| 亚洲欧美偷国产日韩| 亚洲一区二区三区在线播放无码| 一本之道加勒比在线观看| 中国新疆XXXXXL19D| 99久久国产自偷自偷免费一区 | 巴西女人与禽2O2O性论交| 超碰97人人模人人爽人人喊| 短乱俗小说500篇免费下载| 国产成人久久综合第一区| 国产伦精品一区二区三区免.费 | 教官在我腿中疯狂律动H| 精品无码人妻一区二区免费蜜桃| 久久久久久精品无码人妻| 美国ZOOM动物| 欧美另类精品黑人巨大| 久久av蜜臀人妻一区二区三区| 久久午夜无码鲁丝片| 女人高潮娇喘抽搐喷水动态视频| 欧洲最猛黑人XXXⅩ猛男欧| 日日摸日日碰夜夜爽97| 无码AV在线一本无码| 亚洲AV中文无码4区| 野花韩国日本高清免费5| 2019日韩中文字幕MV| 被陌生人带去卫生间啪到腿软| 动漫成人无码免费视频在线播| 国产精品自产Av一区二区三区| 狠狠人妻久久久久久综合| 久久青草费线频观看| 欧美黑人猛XXxXX内射| 日产精品一区二区| 无码人妻精品一区二区三区99不 | 精品久久人人爽人人玩人人妻| 老牛精品亚洲成AV人片| 欧美黑人性爱视频| 三个女儿一锅烩大团圆全文阅读| 无码少妇丰满熟妇一区二区| 亚洲精品无码AV中文字幕电影网| 尤物国精品午夜福利视频| GAY片男同网站WWW| 国产SUV精品一区二区四| 久久精品国产99精品亚洲| 一本一道久久A久久精品综合| X姓女RAPPER的首次亮相| 熟妇高潮一区二区精品de| 国产自偷在线拍精品热| 野花影视大全在线西瓜在线播放| 全球AV集中精品导航福利 | 久久久久亚洲精品无码系列| 亚洲中文字幕AV无码区| 两个黑人大战娇妻的小说| 23部禽女乱小说内| 日本三级欧美三级人妇视频|